Production of Hydrogen Storage Material MgH₂ and its Applications

Hiroshi Uesugi[°], Takashi Sugiyama, and Isao Nakatsugawa BIOCOKE Lab. Ltd., Japan * Corresponding author: uesugi-h@biocokelab.com

Abstract

Magnesium hydride, MgH₂, is a promising candidate for hydrogen carrier in the next generation energy network. Along with abundance of raw material and ease of handling, high hydrogen capacity of MgH₂ is suitable for the H₂ source of fuel cell or hydrogen engine. We have succeeded in producing MgH₂ powder in industrial scale, based on thermodynamic equilibrium technique. To solve the problem of poor kinetics of MgH₂ in hydrogen release, we adopted hydrolysis process, which can attain hydrogen production yield up to 15.2 mass% below 100 deg.C. Application examples of cartridge-type hydrogen reactors to portable power generators and personal vehicles combined with polymer electrolyte fuel cells are presented. The hydrolysis product Mg(OH)₂ can be re-used for other applications, or regenerated to Mg or MgH₂ by plasma process. Finally, a comprehensive recycling system for MgH₂ is proposed.

1. Introduction

There is a growing concern on hydrogen economy due to the fear of global warming and limited fossil fuel resources [1]. Along with electricity, hydrogen is considered as secondary energy which can complement the deficit of renewable primary energy. In order to utilize hydrogen energy effectively, it is indispensable to develop a carrier in which hydrogen can be safely stored with high density. As the carrier will be used globally, abundance of material and cost are crucial factors. Several types of hydrogen carriers have been proposed such as metal [2], organic [3], or inorganic [4] hydrides, and methane [5].

Magnesium and its alloys have been widely utilized as a lightweight structural material. But they also possess attractive features as an energy storage material.

In this paper, the use of magnesium hydride MgH₂ as a promising hydrogen carrier for future hydrogen economy is proposed.

Following the industrial process of MgH₂ production and the hydrogen extraction based on hydrolysis, application examples as portable batteries and personal vehicles combined with polymer electrolyte fuel cells (PEFC) will be presented. Finally, a comprehensive recycling system for MgH₂ is proposed.

2. MgH₂ as Hydrogen Carrier

It is a world-wide consensus that the future energy resource is not fossil fuel but renewable energy such as solar, wind or geothermal heat. These renewable energy sources are low in density, and intermittent by nature. Therefore, it is necessary to transform renewable (primary) energy to highly dense, usable (secondary) energy. Electricity and hydrogen are suitable for secondary energy. However, they have some problems regarding large-scale storage and transport for long distance.

Recently, magnesium and its alloys have attracted attention as energy storage materials;

- (a) Abundant raw material (earth's crust contains 2wt% Mg, sea water contains 0.13% Mg or total of 1800 Tton [6,7]),
- (b) Stable in contact with air,
- (c) Environment and human friendly (a vital component of a healthy human diet),
- (d) High storage capacities of hydrogen as much as 7.6wt% (110kg-H₂/m³),
- (e) Low negative electrode potential, suitable for battery (Mg → Mg²⁺ + 2e; Eo=-2.37V

vs. SHE)

(f) High oxidation heat (Mg + H₂O \rightarrow MgO + H₂; Δ H = -360 kJ/mol)

Among them, (d)-(f) are particularly of interest. As for (e), sea-water battery and sacrificial anode are good examples. Now Mg-ion battery [8] and Mg-air battery [9] have been proposed, aiming for post Li-ion batteries. As for (f), Yabe [7,10] proposes magnesium as fuel for power generation plants. While (e) (f) need further studies and for commercialization, (d), hydrogen storage material for fuel cell, is an emerging item as the market is rapidly expanding [11].

3. Production of MgH₂

So far, thermal decomposition reaction of diethyl magnesium MgEt₂ (Equation 1) and direct hydrogenation (Equation 2) are used for the synthesis of MgH₂ [6];

$$MgEt_2 \rightarrow MgH_2 + 2C_2H_4$$
(1)

 $Mg + H_2 \rightarrow MgH_2 \quad \Box \tag{2}$

The former process produces reactive MgH₂ that makes handling difficult. Akiyama and co-workers have developed direct hydrogenation processes by means of combustion synthesis [12] and hydrogen CVD [13]. Filament MgH₂, and later, granule MgH₂ were successfully synthesized using a hydrogenation furnace shown in Figure 1. Here, an industrial process of MgH₂ utilizing thermal equilibrium process co-developed with Akiyama [14,15] is mainly presented.

Usually, Mg powder slowly reacts with hydrogen under 250-400 deg.C and high H_2

pressure. It is difficult to accomplish hydrogenation at once. Then a procedure called 'activation process' in which adsorption-desorption of hydrogen to Mg is applied for numerous times under specific condition to enhance sorption kinetics.

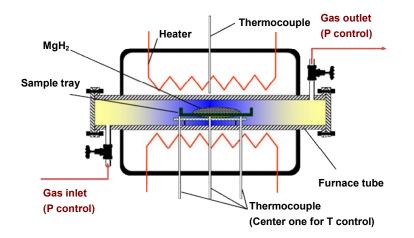
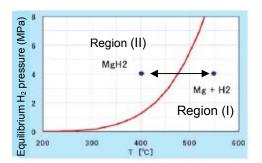



Figure 1: Schematic diagram of hydrogenation furnace for magnesium [12].

Figure 2: Equilibrium diagram of MgH_2 and $(Mg+H_2)$.

The basic idea of our proposed process can be explained with Mg-MgH₂ equilibrium, shown in Figure 2. First, raw material mainly consisting Mg powder is kept at Region (I) in which Mg and H₂ are thermodynamically stable. Under such condition, surface film is effectively removed. Next, the chamber atmosphere is changed to Region (II) in which MgH₂ is preferentially formed. By going back and forth between Regions (I) and (II), MgH₂ is produced with lower cost and higher efficiency compared to traditional activation process. Modifying the lab-furnace shown in Figure 1 to a small-scale batch furnace made it possible to produce 5 kg of MgH₂. The average production yield attains 95.8 % with a good reproducibility. Figure 3 shows XRD chart of obtained MgH₂. The result of a commercially available MgH₂ reagent is also shown for reference. Both samples show peaks at the same diffraction angles.

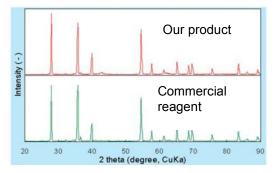


Figure 3: XRD chart of MgH₂

4. Hydrogen Production by Hydrolysis of MgH₂

Mg based hydrogen storage materials have been studied for more than 40 years [16]. Mg can absorb 7.6wt% of H_2 , which is one of the largest capacity among metal hydrides. However, sluggish desorption kinetics of H_2 in temperature higher than 300 deg.C is the main obstacle for further development or commercialization.

Magnesium, along with other alkali or alkali-earth metals such as Li or Ca, is thermodynamically unstable that is readily oxidized with water to magnesium hydroxide $Mg(OH)_2$ accompanied by H_2 gas evolution. Its hydride MgH_2 also reacts with water but generates twice in H_2 volume, which is summarized in Table 1.

Table 1: Hydrogen volume generated from Mg and MgH₂ (wt%)

Chemical reaction	Include H ₂ O	Exclude H ₂ O					
$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2$	3.3	8.2	(3)				
$MgH_2 + 2H_2O$ $\rightarrow Mg(OH)_2 + 2H_2$	6.4	15.2	(4)				

Fuel cell (FC) is an electric power generator utilizing electrochemical reaction of H₂ and O₂. Combined with exhaust heat, it reaches high energy efficiency without CO2 During the FC operation, gas emission. water is generated as a byproduct. If this water is recovered for the hydrolysis reaction (4), maximum H₂ gas volume of 15.2% could In addition, the reaction be attained. proceeds under 100 deg.C, which is particularly suitable for H₂ source of polymer electrolyte FC (PEFC) used in small-middle scale batteries for mobile phone, notebook PC and electric vehicles.

 H_2 generation utilizing hydrolysis reaction of metal hydrides has been proposed for LiH-NaH[17], NaBH₄[18] and MgH₂ [19-25] systems. The common drawback of hydrolysis process compared to conventional physical H₂ generation from metal hydrides is that the reaction is irreversible. As a result, the obtained hydroxide should be reduced to metal or metal hydride by putting external energy, or re-used for other applications. This issue will be discussed in Section 6.

In case of MgH₂ application, the surface is gradually covered with Mg(OH)₂ film and the reaction is slowed down. The addition of organic acid [19], foreign metallic particles which works as galvanic cathode to Mg [20], chlorides [21] or ammonium salts [22], ball milling with CaH₂[23] or graphite [24] are actively investigated. We are also trying to improve the hydrogen kinetics by pulverization, addition of acids and ultrasonic radiation [25].

Figure 4 shows the influence of the particle

size and temperature on hydrogen production yield (HPY) of MgH₂. Here, HPY is calculated as follows;

HPY(%) = [H₂ gas collected after 60 min. of operation] / [theoretical value calculated from Eq.(4)].

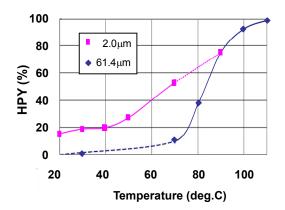


Figure 4: Effect of MgH₂ grain size and temperature on HPY.

Smaller grain size is effective if operation temperature is low. Table 2 shows the influence of temperature, additives and ultrasonic wave radiation on HPY. The positive effect of ultrasonic wave radiation is evident, which can be explained by enhanced mass-transfer and localized heating by cavitation phenomenon. It is interesting to note that HPY shows maxima at frequency of 28 and 100kHz, suggesting the presence of optimum frequency for detaching H₂ bubbles or viscous Mg(OH)₂ at Mg-solution interface [26]. The addition of citric acid and MgCl₂ break the surface film that accelerates depassivation even at lower temperature.

5. Development of Mag-H2 Reactor and its Application

5.1 Development of Mag-H2 Reactor

Mag-H2 reactor is an apparatus for providing H_2 gas on-demand utilizing the hydrolysis of MgH₂. The process flow for generating electricity combined with FC is shown in Figure 5.

Table 3 shows the specification of Mag-H2 reactor. MHR3, which is suitable for educational purpose, equips three fuel tubes inside the cartridge, and each tube contains 6 MgH₂ pellets. The type of fuel cell is PEFC, with cell capacity of 30W, and output power is 150Wh.

Additives	Temp. (deg.C)	Grain size (µm)	Ultrasonic wave frequency (kHz)			
			0	28	45	100
None	20	61.4	<1%	10%	15%	1%
		2.0	14	85	22	82
	70	61.4	11	-	55	-
	92	61.4	81	-	-	-
Citric acid (15%)	20	61.4	94	-	-	-
MgCl ₂ (10%)	70	61.4	90	-	-	-
MgCl ₂ (1%)	70	61.4	57	_	-	-

 Table 2:
 Effect of temperature and ultrasonic wave radiation on HPY. (Note: figures in Bold indicate HPY higher than 80%.)

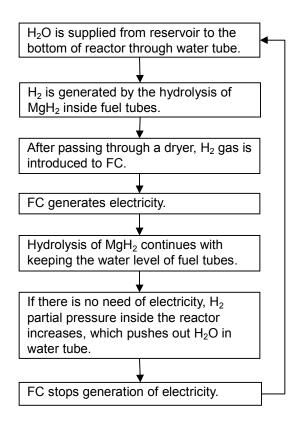


Figure 5: Process flow of Mag-H2 reactor to generate electricity with FC.

Figure 6 shows the appearance of Mag-H2 reactor (MHR30). Depending on the application or operation mode, adequate amount of MgH_2 powder or pellet can be selected.

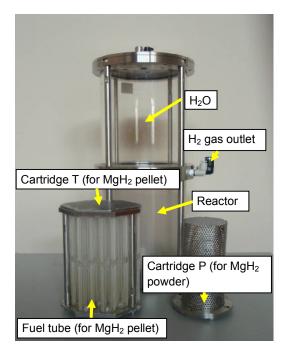


Figure 6: Mag-H2 reactor (MHR30).

Table 3: Type and specification of Mag-H2 reactor.

Mag-H2 reactor	Main application	Fuel tube (-)	Fuel cell capacity (W)	Output power (Wh)
MHR3	Educational kit	3	30	150
MHR10	Portable power generator	10	100	500
MHR30	Commuter car	25	300	1,250

5.2 Application Examples

In collaboration with several industrial partners and universities, following products are under development.

Educational kit

The education about low-carbon society based on hydrogen and FC technologies is important. There are growing needs of experiment demonstration on hydrogen driven FC at schools. Figure 7 shows a prototype of such system.

Portable power supply (Emergency power supply)

The utilization of portable power supply for outdoors, at rural/remote/mountainous regions or emergency battery at disaster is getting popular. MgH₂ fuel can be stored for a long

period and the cartridge system is particularly convenient for on-demand use. Figure 8 shows a prototype of portable power supply. <u>Blow cleaner, lawn mower</u>

As these apparatus are often used in urban areas, the noise, vibration, and exhaust gas during their operation may cause problems. A prototype developed with a partner showed in Figure 9.

Commuter car

In response to the needs of personal vehicle to relieve congestion in urban area and electric wheel chair for disabled people, several types of FC driven vehicles are being developed. Figure 10 shows a schematic diagram and actual driving of SUZUKI senior car equipped with MHR30 and FC.

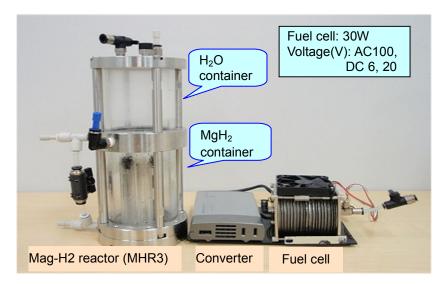


Figure 7: FC system for educational use.

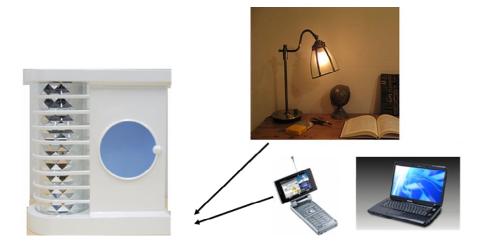
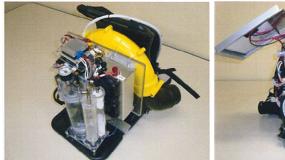



Figure 8: Portable power supply.

(a) Blow cleaner equipped with Mag-H2 and FC

(b) Lawn mower equipped with Mag-H2, FC and solar panel.

Figure 9: Blow cleaner and lawn mower equipped with Mag-H2 FC.

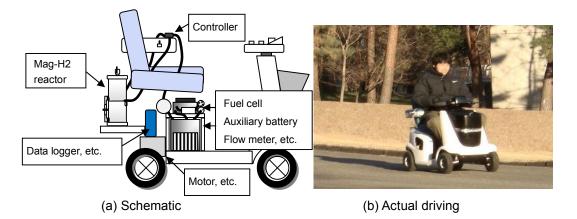


Figure 10: Installation of Mag-H2 reactor and FC to SUZUKI senior car.

6. Recycle/re-use of Mg(OH)₂

In the proposed system, MgH₂ is transformed to Mg(OH)₂ by hydrolysis reaction. It will not be eco-friendly nor practical system without re-using/recycling them. We are also aggressively engaged in the research about re-using/recycling Mg(OH)₂ or MgO.

6.1 Cascade recycle of MgO/Mg(OH)₂

MgO is widely used as a chemical agent, of which the world consumption is in tens of megatons [6]. Main applications are;

- Additives for mortar in construction,
- Mild neutralizing agent in medicine,
- Heat resistant bricks,
- Additives for plastics.

Hydration-dehydration reaction of MgO and Mg(OH)₂ are reversible, which can be applied as a heat-pump operated around 300 deg.C [27]. In addition, MgO and Mg(OH)₂ react with CO₂ to carbonates, which are expected to work as fixing agents for greenhouse CO₂ gas [28]. As the reaction is exothermic, the heat can be used for other applications.

6.2 Regeneration to Mg/MgH₂

Electric refining of anhydrous MgCl₂ and thermal reduction of magnesite under 1200-1500 deg.C in presence of ferrosilicon alloy are current production technologies for Mg ingot, which could be adapted for the regeneration of Mg(OH)₂/MgO. Yabe proposes thermal reduction of MgO by solar-powered laser [7]. We are developing a reduction process from $Mg(OH)_2/MgO$ to Mg, or further to MgH_2 by reactive hydrogen plasma. A schematic diagram is shown in Figure 11. The advantages of this system are the creation of H radical atmosphere with temperature more than 2000 deg.C, and ease of intermittent operation.

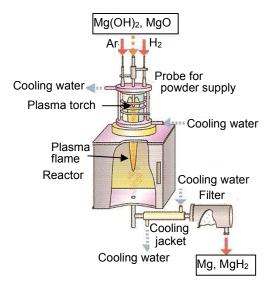


Figure 11: Schematic diagram of plasmaassisted regeneration system.

7. Future Development

 MgH_2 is stable in dry atmosphere which does not require special handling or storage compared to compressed or liquefied H_2 . Therefore cartridge type MgH_2 can be sold at usual glossary stores and kept at homes or warehouses. We are planning to scale up this technology according to the size of FC and its requirement, shown in Figure 12. The application to mobile electric devices such as mobile phone or notebook PC, and electric vehicle are particularly promising.

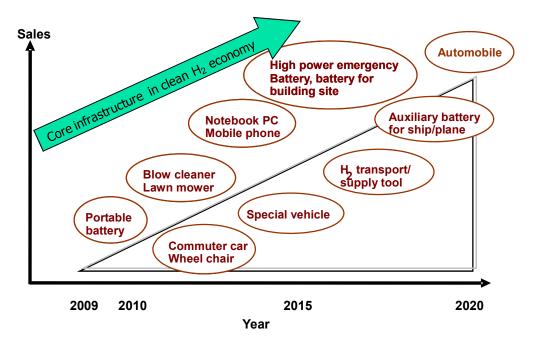


Figure 12: Perspective of Mag-H2 reactor +FC application.

Finally, a comprehensive recycling system of MgH₂ is proposed, which is shown in Figure 13. Among them, following three issues are considered as main tasks to be accomplished; - Cost down of MgH₂. A production furnace with 50 kg MgH₂ batch capacity has been recently constructed. Initial trials showed satisfactory results. The full-scale operation is planned in March 2010.

- Recycle of used Mg(OH)₂ by cascading

re-use or regeneration by plasma process.

- Continuous effort for exploring application and market that will provoke a large-scale production-distribution of Mg, MgH₂, and Mg(OH)₂.

We hope that our technology would provide another prospect in Mg industry, and eventually contribute to the realization of a clean H_2 economy.

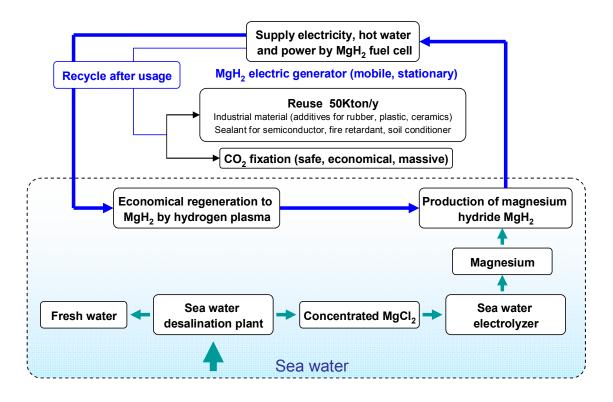


Figure 13: Comprehensive recycling process of MgH₂

References

- [1] For example, "The Hydrogen economy: Opportunities, Costs, Barriers, and R&D Needs", National Research Council and National Academy of Engineering of the National Academies (2004), <u>http://nap.edu/openbook.php?isbn=030909</u> 1632.
- [2] M. Jehan: 66th Ann. World Magnesium Conference, International Magnesium Association, San Francisco, June (2009).
- [3] M. Ichikawa ed.: "Organic Storage Materials and Nano Technology for Hydrogen Society", CMC Publications, Japan (2007).
- [4] B. Bogdanovic, M. Schwictrardi: J. Alloys. Comp., 1-9 (1997) 253-254.
- [5] K. Hashimoto, N. Kumagai, Z. Kato, and K. Izumiya: Zairyo-to-Kankyo, 58 (2009) 250-259.
- [6] A.F. Holleman and E. Wiberg: "Inorganic Chemistry", Academic Press, (2001) pp.1056.
- [7] T. Yabe and T. Yamaji: "Magnesium

Civilization", PHP Publishing, Japan (2010).

- [8] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, and E. Levi: Nature (London), 407 (2000) 724.
- [9] C. Chen, H. Zheng, and Y. Si: Abstract of ECS 210th Meeting, The Electrochemical Society, 0374 (2006)
- [10] Y. Sakurai, T. Yabe, K. Ikuta, Y. Sato, S. Uchida, and E. Matsunaga: The Review of Laser Engineering, Suppl. volume (2008) 1157-1160.
- [11] For example, http://en.wikipedia.org/wiki/Fuel_cell.
- [12] H. Isogai, T. Akiyama, and J. Yagi: J. Japan Inst. Metals, 60 (1996) 338-344.
- [13] I. Saita, T. Toshima, S. Tanda , and T. Akiyama: J. Alloys and Comp., 446-447 (2007) 82-83.
- [14] T. Akiyama, X. Zhang, M. Sato, H. Hayashi, T. Hiraki, I. Saita, and H. Uesugi: Japanese Patent 2008-44832.
- [15] H. Uesugi: Japanese Patent 2009-99534.

- [16] J.J. Reilly and R.H. Wiswall: Inorg. Chem., 6 (1967) 2220-2223.
- [17] A.W. McClaine, et al.: Proc. of the 2000 U.S. DOE Hydrogen Program Review, NREL/CP-570-28890 (2000).
- [18] S. C. Amendola, S. L. Sharp-Goldman, M. S. Janjua, M. T. Kelly, P. J. Petillo, and M. Binder: J. Power Sources, 85 (2000) 186-189.
- [19] Y. Kojima, K.-I. Suzuki, Y. Kawai: J. Mat. Sci., 39 (2004) 2227-2229.
- [20] T. Suzuki and I. Shikaya, Japanese Patent 2003-314792.
- [21] N. Tsuji: Chemical Equipment, 10 (2006) 69-75.
- [22] V.D. Makhaev, L.A. Petrova, and B.P. Tarasov: Russ. J. Inorganic Chem.,

53(2008) 858-860.

- [23] J.-P. Tessier, P. Palau, J. Huot, R. Schulz, and D. Guay: J. Alloys Comp., 376 (2004) 180-185.
- [24] R.V. Lukashev, N.A. Yakovleva, S.N. Klyamkin, and B.P. Tarasov: Russ. J. Inorganic Chem., 53 (2008) 343-349.
- [25] H. Arai and Y. Fujita: Alutopia, 4 (2009) 32-36.
- [26] S. Hiroi, C. Zhu, S. Hosogai, and T. Akiyama: Proc. 158th Ann. Autumn ISIJ Meeting (2009) PS-73.
- [27] Y. Kato, A. Minakami, G. Li, and Y. Yoshizawa: Canadian J. of Chemical Engineering, 79 (2001) 536-541.
- [28] H. Uesugi: Japanese Patent 2009-234829.